COMBINATORICA Bolyai Society – Springer-Verlag

HIGHLY ARC-TRANSITIVE DIGRAPHS WITH NO HOMOMORPHISM ONTO $\mathbb Z$

ALEKSANDER MALNIČ, DRAGAN MARUŠIČ, NORBERT SEIFTER, BORIS ZGRABLIĆ

Received April 12, 1999

In an infinite digraph D, an edge e' is reachable from an edge e if there exists an alternating walk in D whose initial and terminal edges are e and e'. Reachability is an equivalence relation and if D is 1-arc-transitive, then this relation is either universal or all of its equivalence classes induce isomorphic bipartite digraphs. In Combinatorica, 13 (1993), Cameron, Praeger and Wormald asked if there exist highly arc-transitive digraphs (apart from directed cycles) for which the reachability relation is not universal and which do not have a homomorphism onto the two-way infinite directed path (a Cayley digraph of $\mathbb Z$ with respect to one generator). In view of an earlier result of Praeger in Australas. J. Combin., 3 (1991), such digraphs are either locally infinite or have equal in- and out-degree. In $European\ J$. Combin., 18 (1997), Evans gave an affirmative answer by constructing a locally infinite example.

For each odd integer $n \geq 3$, a construction of a highly arc-transitive digraph without property Z satisfying the additional properties that its in- and out-degree are equal to 2 and that the reachability equivalence classes induce alternating cycles of length 2n, is given. Furthermore, using the line digraph operator, digraphs having the above properties but with alternating cycles of length 4 are obtained.

1. Introduction

We adopt the terminology of [1]. Let D be a digraph, consisting of a set V(D) of vertices and a set $E(D) \subseteq V(D) \times V(D)$ of edges. For a non-negative integer s, an s-arc in D is a sequence (x_0, \ldots, x_s) of s+1 vertices of D such

Mathematics Subject Classification (2000): 05C25, 05C20

Supported in part by "Ministrstvo za šolstvo, znanost in šport Slovenije", research program PO-0506-0101-99.

that, for each $i \in \{0, ..., s-1\}$ the pair (x_i, x_{i+1}) is an edge of D, and for each $i \in \{1, ..., s-1\}$, $x_{i-1} \neq x_{i+1}$. We say that D is s-arc-transitive if its automorphism group Aut D is transitive on the set of s-arcs, and that D is highly arc-transitive if it is s-arc-transitive for all $s \geq 0$. Note that highly arc-transitive digraphs, with the exception of all directed or two-way directed cycles, are infinite.

An alternating walk in D is a walk such that every internal vertex is either the head or the tail of both of its incident edges. Let $e, e' \in E(D)$. The edge e' is reachable from e if there exists an alternating walk in D whose initial and terminal edges are e and e'. Clearly, reachability is an equivalence relation, which will be denoted by \mathcal{A}_D or just \mathcal{A} when the digraph in question is clear from the context. Let $\mathcal{A}(e)$ denote the equivalence class containing the edge $e \in E(D)$. If D is 1-arc-transitive, then either \mathcal{A} is universal or all of the digraphs $\langle \mathcal{A}(e) \rangle$, $e \in E(D)$, induced by the equivalence classes of \mathcal{A} are isomorphic to a fixed bipartite digraph, denoted by $\mathcal{\Delta}(D)$ (see [1, Proposition 1.1]). Given a fixed connected 1-arc-transitive bipartite digraph $\mathcal{\Delta}$, we let $\mathcal{D}(\mathcal{\Delta})$ denote the class of all connected 1-arc-transitive digraphs D for which $\mathcal{\Delta}(D)$ is isomorphic to $\mathcal{\Delta}$.

A digraph has property Z if it has a digraph homomorphism onto the two-way infinite path Z, that is, the digraph with vertex set \mathbb{Z} and edges of the form (i,i+1), $i \in \mathbb{Z}$. Note that property Z is equivalent to having only balanced cycles, that is, cycles having the same number of forward and backward edges. It was proved in [1, Lemma 3.2(b)] that a 1-arc-transitive digraph D, with A_D universal, does not have property Z. A lack of further examples suggests the following question posed in [1, Question 1.3].

Question 1.1. Does there exist a highly arc-transitive digraph D (apart from cycles) in $\mathcal{D}(\Delta)$ for some bipartite digraph Δ , without property Z?

An affirmative answer to this question was given by Evans [3], who constructed an example of such a digraph with out-degree 2 and infinite indegree. On the other hand, in view of an earlier result of Praeger [2], a locally finite highly arc-transitive digraph with unequal in- and out-degree must necessarily have property Z.

It is the purpose of this paper to construct an infinite familly of locally finite highly arc-transitive digraphs without property Z. These are, to the best of our knowledge, the first such examples. More precisely, for each odd integer $n \geq 3$ we give a construction of a 4-valent digraph (with in- and outdegrees 2) satisfying the properties required in Question 1.1 and belonging to $\mathcal{D}(\Delta)$, where Δ is the alternating cycle of length 2n.

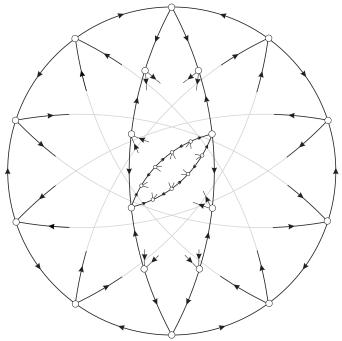


Fig. 1. The construction of a highly arc-transitive digraph without property Z and having alternating cycles of length 2n, for n=5.

The construction is suggested by Figure 1, where the case n=5 is shown.

To give an intuitive recursive definition of this digraph, start with an alternating cycle C of length 2n. At each pair of antipodal vertices u, v of C, an alternating cycle $C_{u,v}$ of the same length is glued to C, in such a way that u and v are antipodal on $C_{u,v}$, too, and that their in- and out-degrees equal 2. In this way, every vertex on C attains valency 4. The process is recursively repeated in each of the new alternating cycles and at each pair of antipodal vertices of valency 2.

It can be seen that any two adjacent alternating cycles in the above construction intersect in precisely two antipodal vertices. By taking one half of each of these two alternating cycles, we obtain an unbalanced cycle. Therefore the constructed digraph does not have property Z.

A more precise definition of the above digraphs is given in Section 2. Their high arc-transitivity is proved in Theorem 3.3. Furthermore, using the line digraph operator, digraphs having the above properties but with alternating cycles of length 4 are obtained (Corollary 3.4).

Finally, let us mention that property Z was also considered in connection with the concepts of in- and out-spread [1]. Let D be a highly arc-transitive digraph with finite out-degree and let $v \in V(D)$. By p_k we denote the number of vertices which can be reached on directed paths of length k from v. In view of the transitivity requirements this number clearly does not depend on the choice of the vertex v. The out-spread of D is defined as $\limsup_{k\to\infty} p_k^{\frac{1}{k}}$. (The in-spread is defined similarly.) It was shown in [1] that a highly arc-transitive digraph D has property Z if its out-spread (respectively, in-spread) is equal to 1. Also in the above mentioned construction of Evans the out-spread equals 2. It is quite easy to see that in our examples both in- and out-spread are equal to 2.

2. Formal constructions

We are now going to formalize the intuitive definition from Section 1. There are two ways of doing it; each of these has its advantages and disadvantages (which is why both are introduced here).

If we endow the arcs in Figure 1 with labels R and L as shown in Figure 2, the alternating cycles of length 2n give rise to the "relation" $(RL^{-1})^n$. The cycles of length 2n, consisting of two halves of adjacent alternating cycles (these are the unbalanced cycles mentioned in Section 1), lead to the "relation" $((RL^{-1})^{(n-1)/2}R)^2$.

This suggests that the digraphs given intuitively in the introduction could be defined in the following way. First, for every odd positive integer $n \geq 3$ let G_n be the group with the presentation

$$G_n = \langle L, R \mid (RL^{-1})^n, ((RL^{-1})^{(n-1)/2}R)^2 \rangle,$$

and let X_n be the Cayley digraph $\operatorname{Cay}(G_n, \{L, R\})$. It follows immediately from the defining relations that X_n contains unbalanced cycles and therefore it does not have property Z. As for the proof that X_n indeed corresponds to the given intuitive picture and that it is highly arc-transitive, it is of crucial importance that the intersection graph of alternating cycles (that is, the graph whose vertices are alternating cycles of X_n with adjacency defined by nontrivial intersection) is a tree. To this end we now introduce the second formalization, from which the underlying tree-like structure is transparent.

As a starting point we take the infinite n-valent (undirected) tree T_n as the Cayley graph of the free product of n copies of \mathbb{Z}_2 ,

$$F_n = \langle a_0 \rangle * \cdots * \langle a_{n-1} \rangle, \quad a_i^2 = 1, \ i \in \mathbb{Z}_n,$$

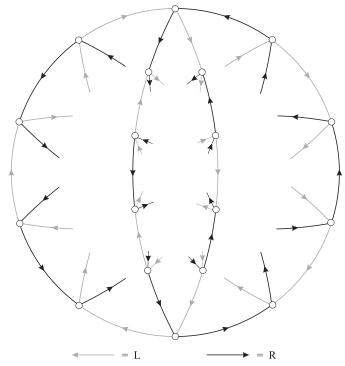


Fig. 2. The representation of the digraph in Figure 1 as a Cayley digraph X_5 .

with respect to the generating set $A^{(n)} = \{a_0, \ldots, a_{n-1}\}$. Next we truncate T_n , that is, we replace each vertex by an n-cycle in a natural way according to the cyclic order of the generating set $A^{(n)}$, obtaining a cubic graph T_n^* . As a second step, we construct the directed tensor product $T_n^* \otimes \vec{K_2}$ of T_n^* by the directed digraph $\vec{K_2}$ with two vertices and one edge, that is, the (directed) canonical double cover of T_n^* , where all edges are oriented from level — to level +. Observe that the n-cycles in T_n^* have been transformed into alternating cycles of length 2n in the digraph $T_n^* \otimes \vec{K_2}$. Finally, the digraph Y_n is obtained by contracting all the edges in $T_n^* \otimes \vec{K_2}$ arising from edges in T_n . Of course, the digraph Y_n has valency 4 with in-degree and out-degree 2. By construction, the intersection graph of alternating cycles in Y_n is isomorphic to the tree T_n . Similarly, by construction Y_n corresponds to the intuitive picture. In Proposition 3.2 we prove that X_n and Y_n are isomorphic.

Note that every vertex v in T_n may be written in a canonical form as a reduced word in the alphabet $A^{(n)}$ with all exponents equal to 1 (this will be referred to as the *canonical expression of* v). After the truncation,

every vertex v in T_n gives rise to the cycle $v_0v_1...v_{n-1}$ in such a way that each vertex v_i is adjacent to $(va_i)_i$. This cycle lifts to the alternating cycle $C_v = v_0^+ v_1^- v_2^+ ... v_{n-1}^+ v_0^- v_1^+ v_2^- ... v_{n-1}^-$ in the tensor product $T_n^* \otimes \vec{K_2}$ with the (directed) edges (v_i^+, v_{i+1}^-) and (v_i^+, v_{i-1}^-) for all $i \in \mathbb{Z}_n$. Finally, the vertices v_i^{ε} and $(va_i)_i^{-\varepsilon}$ of $T_n^* \otimes \vec{K_2}$ are identified in Y_n for all $v \in T_n$, $i \in \mathbb{Z}_n$, $\varepsilon \in \{+, -\}$. The vertices of Y_n will be denoted by $[v_i^{\varepsilon}] = \{v_i^{\varepsilon}, (va_i)_i^{-\varepsilon}\}$.

A thorough analysis of the digraphs X_n and Y_n leading to an affirmative answer to Question 1.1 is done in the subsequent section.

3. High arc-transitivity

For each vertex $v \in V(T_n)$ let $\bullet v$ denote the vertex obtained from v by replacing a_i with a_{i+1} , for each $i \in \mathbb{Z}_n$, in the canonical expression for v. Note that the \bullet -operator is an automorphism of T_n fixing id and rotating its neighbors. To each element $f \in F_n$ we associate a well defined permutation ϕ_f of the vertex set of Y_n according to the rule

$$[v_i^{\varepsilon}] \cdot \phi_f = [(fv)_i^{\varepsilon}], \quad i \in \mathbb{Z}_n, \ \varepsilon \in \{+, -\}.$$

Further, let ρ denote a well defined permutation on $V(Y_n)$ mapping according to the formula

$$[v_i^{\varepsilon}] \cdot \rho = [(\bullet v)_{i+1}^{\varepsilon}], \quad i \in \mathbb{Z}_n, \ \varepsilon \in \{+, -\}.$$

Obviously, $\bar{F}_n = \{\phi_f \mid f \in F_n\}$ is a group isomorphic to F_n . We now identify Y_n as a Cayley digraph.

Lemma 3.1. The group $H_n = \langle \bar{F}_n, \rho \rangle$ is a subgroup of Aut Y_n and acts regularly on the vertex set of Y_n .

Proof. To prove that ϕ_f , $f \in F_n$, is an automorphism of Y_n , take an edge e of Y_n . Then either $e = [v_i^+][v_{i-1}^-]$ or $e = [v_i^+][v_{i+1}^-]$. Since

$$[v_i^+] \cdot \phi_f = [(fv)_i^+], \quad [v_{i-1}^-] \cdot \phi_f = [(fv)_{i-1}^-], \quad [v_{i+1}^-] \cdot \phi_f = [(fv)_{i+1}^-],$$

the image $e\phi_f$ is indeed an edge in Y_n . Therefore $\phi_f \in \operatorname{Aut} Y_n$. The proof that ρ is an automorphism of Y_n is done in a similar manner and is left to the reader.

To prove regularity of H_n , denote the orbits of \bar{F}_n by $B_i = \{[v_i^+] \mid v \in V(T_n)\} = \{[v_i^-] \mid v \in V(T_n)\}, i \in \mathbb{Z}_n$. Clearly, \bar{F}_n acts regularly on each of its orbits. Since \bar{F}_n is normal in H_n and ρ is a permutation of order n

cyclically permuting the orbits B_0, \ldots, B_{n-1} , it follows that H_n acts regularly on $V(Y_n)$.

In view of Lemma 3.1, Y_n is a Cayley digraph of the group H_n . In fact, the following result holds.

Proposition 3.2. There is a group isomorphism between G_n and H_n giving rise to a digraph isomorphism $X_n \cong Y_n$.

Proof. Let $\phi_i = \phi_{a_i}$, $i \in \mathbb{Z}_n$. Recalling that n is odd, set k = (n-1)/2 and define

$$r = \phi_0 \rho^{k+1}, \quad l = \phi_0 \rho^k.$$

Since $\rho = l^{-1}r$ and $\phi_i = \rho^{-1}\phi_{i-1}\rho$, we have $\langle r, l \rangle = H_n$.

Choosing the vertex $[\mathrm{id}_0^+]$ in Y_n , where $\mathrm{id} \in F_n$, we have that r and l, respectively, map it to its two successors $[\mathrm{id}_1^-]$ and $[\mathrm{id}_{2k}^-]$ and so $Y_n = \mathrm{Cay}(\langle r, l \rangle | \{r, l\})$.

A short computation shows that $(rl^{-1})^n = 1$ and $((rl^{-1})^{(n-1)/2}r)^2 = 1$. One infers that H_n is a homomorphic image of G_n . However, the two relations in r and l which hold in H_n are actually the defining relations for H_n , thereby implying that H_n is in fact isomorphic to G_n . To this end we have to see that any relation in H_n is a consequence of either the two given relations or the group axioms. Assume that some relation S is a counterexample of minimal length. Clearly, S gives rise to a reduced closed walk Win Y_n . Consider the sequence $\mathcal{C} = C_0 C_1 \dots C_{m-1}$ of alternating cycles in Y_n in which the maximal alternating subwalks of W are contained (in this order). If m=1 then S is a multiple of one basic relation, and therefore not a counterexample. Hence m > 1. We may assume that any two consecutive cycles $C_i, C_{i+1}, i \in \mathbb{Z}_m$, are distinct (but all cycles are not necessarily pairwise distinct). The sequence \mathcal{C} determines a walk in the tree T_n . So there exists some $j \in \mathbb{Z}_m$ such that $C_{j-1} = C_{j+1}$. Let w_1 and w_2 be the two antipodal vertices where C_{j-1} and C_j are glued together. Since the relation S is reduced, we can assume that W enters C_i at w_1 and leaves it at w_2 . The walk W leaves C_{j+1} at some vertex $v \neq w_2$. Consider the part of W which contains the alternating path from w_1 to w_2 in C_i (this path has length at least n) and the path in C_{i+1} from w_2 to v. Substituting this part by the shorter of the two paths in C_{j+1} which connect w_1 to v, we obtain a closed walk W' in Y_n shorter than W. Also, W' gives rise to a relation S' in H_n which is not a consequence of either the two given relations or of the group axioms, contradicting the minimality of S.

We have thus shown that the mapping $R \mapsto r$, $L \mapsto l$ defines an isomorphism from G_n to H_n . Moreover, this mapping extends to a digraph isomorphism of the respective Cayley digraphs X_n and Y_n .

Theorem 3.3. For each odd $n \ge 3$ the Cayley digraph $X_n \cong Y_n$ is highly arc-transitive and does not have property Z.

Proof. The fact that Y_n does not possess property Z has already been discussed in Section 2. It remains to show that Y_n is s-arc-transitive for any $s \ge 0$. We adopt an inductive argument. By Lemma 3.1, Y_n is 0-arc-transitive. Assume it is s-arc-transitive and prove that it is (s+1)-arc-transitive. It suffices to prove that there exists an automorphism of Y_n , which fixes an s-arc with terminal vertex $[(\mathrm{id})_0^+] = [(a_0)_0^-]$ and exchanges the successors $[(\mathrm{id})_{n-1}^-]$ and $[(\mathrm{id})_{n-1}^-]$.

Given an arbitrary vertex v of the tree T_n , let $a_{i_1}a_{i_2}\cdots a_{i_t}$ be its canonical expression. We define

$$beg(v) = a_{i_1}$$

and

$$\uparrow v = a_{-i_1} a_{-i_2} \cdots a_{-i_t}.$$

Let α be the permutation of $V(Y_n)$ mapping according to the rule

$$[v_i^{\varepsilon}]\alpha = \begin{cases} [v_i^{\varepsilon}], & \text{if beg}(v) = a_0; \\ [(\uparrow v)_i^{\varepsilon}], & \text{if beg}(v) \neq a_0, \end{cases}$$
 for each $i \in \mathbb{Z}_n$.

That α is an automorphism of Y_n is an immediate consequence of the fact that the intersection graph of the alternating cycles of Y_n is a tree.

If D is a digraph, then the line digraph L(D) has vertex set E(D) and (directed) edges of the form ee', where the latter gives rise to a 2-arc in D. It was proved in [1, Lemma 4.1(a)] that L(D) is highly arc-transitive if D is highly arc-transitive. Considering X_n (or Y_n) we immediately see that $L(X_n)$ has alternating cycles of length 4. Also, it was shown in [4, Proposition 1] that L(D) has property Z if and only if D has the same property. This gives the following result.

Corollary 3.4. For each $n \ge 3$ the digraphs $L(Y_n)$ are highly arc-transitive digraphs with alternating cycles of length 4 and without property Z.

References

- [1] P. J. CAMERON, C. E. PRAEGER and N. C. WORMALD: Infinite highly arc transitive digraphs and universal covering digraphs, *Combinatorica*, **13** (1993), 377–396.
- [2] C. E. Praeger: On homomorphic images of edge transitive directed graphs, Australas. J. Combin., 3 (1991), 207–210.
- [3] D. M. EVANS: An infinite highly arc-transitive digraph, European J. Combin., 18 (1997) 281–286.
- [4] R. G. MÖLLER: Descendants in highly arc-transitive digraphs, Discrete Math., 247 (2002), 147–157.

Aleksander Malnič

IMFM, Oddelek za matematiko Univerza v Ljubljani Jadranska 19, 1111 Ljubljana, Slovenija aleksander.malnic@uni-jl.si

Norbert Seifter

Institut für Math. und Ang. Geometrie Montanuniversität Leoben A-8700 Leoben, Austria seifter@unileoben.ac.at

Dragan Marušič

IMFM, Oddelek za matematiko Univerza v Ljubljani Jadranska 19, 1111 Ljubljana, Slovenija dragan.marusic@uni-lj.si

Boris Zgrablić

IMFM, Oddelek za matematiko Univerza v Ljubljani Jadranska 19, 1111 Ljubljana, Slovenija boris.zgrablic@uni-lj.si